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ABSTRACT 

A subgroup X of the locally finite group G is said to be confined, if 
there exists a finite subgroup F < G such that X g n F ~ 1 for all g C G. 
Since there seems to be a certain correspondence between proper confined 
subgroups in G and non-trivial ideals in the complex group algebra C.G, 
we determine the confined subgroups of periodic simple finitary linear 
groups in this paper. 

1. I n t r o d u c t i o n  

The mot iva t ion  for the present paper  is to determine the ideal latt ices of group 

algebras of locally finite simple groups. It  has been shown in several instances 

tha t  this latt ice can be quite sparse. For example, any group algebra IKG of P. 

Hall 's  universal  locally finite group G = ULF jus t  contains the t r ivial  ideals KG, 

0, and w ( K G )  (augmenta t ion  ideal) [3]. And  in fact it is an old quest ion due to 
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I. Kaplansky [15] for which groups G and which fields K the augmentation ideal 

w(KG) is simple. Every such group G must necessarily be simple. 

Kaplansky's question was the starting point for a research programme begun 

by A. E. Zalesskfi to determine the ideal lattices of complex group algebras of 

locally finite simple groups G. This is also linked with character theory of fi- 

nite groups, since ideals in CG correspond naturally with certain systems of 

irreducible complex characters of the finite subgroups of G [30]. 

At present, every locally finite simple group can be sorted into one of the 

following classes: finite groups, infinite linear groups, non-linear finitary linear 

groups, groups of 1-type, groups of p-type (where p is a prime), and groups of 

co-type. Here a group is said to be f i n i t a ry  l inear  if it acts faithfully on an 

infinite-dimensional vector space V in such a way that the fixed-point space of 

each element has finite codimension in V. Locally finite simple groups of 1 - type ,  

p - t y p e ,  or co - type  are defined via Kegel covers as certain non-finitary direct 

limits of finite groups (see Section 2). 

Combining results due to S. Delcroix, B. Hartley, and A. E. Zalesskii, we will 

show in Section 2 that over fields of characteristic zero, group algebras of locally 

finite simple groups of p-type or of oc-type admit only the trivial ideals. The 

same is known for infinite periodic simple linear groups ([11], Theorem B and 

[13], Theorem 1.1), and hence also for periodic simple finitary linear groups with 

natural action on a vector space over an infinite field (see Theorem 4.5). There- 

fore it becomes interesting to study ideal lattices in group algebras of non-linear 

finitary linear periodic simple groups with natural action on a vector space over 

a f in i te  field. These groups have been classified recently by J. I. Hall [10] and 

are either alternating groups or natural generalizations of the finite-dimensional 

classical groups (see Section 3). For alternating groups and for special transvec- 

tion groups the ideal lattices in question have been determined [5], [12]. In the 

present article we are therefore mainly concerned with the remaining cases of 

finitary symplectic, finitary unitary and finitary orthogonal groups. 

Let K be a field of characteristic zero. By [13] non-trivial ideals in KG give 

rise to proper confined subgroups in the locally finite simple group G. Here a 

subgroup X of G is said to be conf ined,  if there exists a finite subgroup F < 

G such that X g n F ~ 1 for all g C G. It is conjectured that there is a certain 

correspondence between proper confined subgroups in C and non-trivial ideals 

in CG. Hence we determine the confined subgroups in periodic finitary linear 

simple groups in the first place. This shall provide a basis for the determination 

of ideal lattices in a subsequent paper. Our main results are as follows. 
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THEOREM A: Let G be a classical finitary linear group of isometries relative to 

a non-degenerate symplectic, unitary, or quadratic form. Suppose that  G admits 

its natural  finitary representation on the infinite-dimensional vector-space V over 

the finite field F, and that X is a confined subgroup in G. Then there exists a 

unique minimal X-invariant subspace W of finite codimension in V, and the 

following hold. 

(a) / f  char F = 2, and if G is a finitary symplectic group, then the symplectic 

bilinear form can be related to a quadratic form q on V with the property that 

X n H has finite index in NH(W), where H denotes the finitary orthogonal 

subgroup of G preserving q. 

(b) In all other cases, X has finite index in NG(W). 

Over fields of characteristic 2, every finitary orthogonal group with non- 

degenerate but defective quadratic form is isomorphic to the finitary symplec- 

tic group which acts naturally on the quotient of the original space modulo the 

radical of the associated bilinear form. Therefore all possibilities of classical fini- 

tary linear groups of isometries are covered by Theorem A. And in particular 

all finitary orthogonal groups considered in this paper will have a non-defective 

quadratic form. 

Note also that  the various subgroups of finite index in normalizers as described 

in Theorem A, as well as the subgroups T~(F, U) in Theorem B below, are indeed 

confined in G (see Section 4). Confined subgroups X of finite index in No(W) 

do of course contain almost the whole centralizer Cc(V/W) .  If  V = W @ W ±, 

then CG(V/W) = Cc(W ±) <_ N c ( W  ±) = NG(W). In this situation we can in 

fact show that  CG(W ±) < X << NG(W ±) resp. CH(W ±) < X n H < NH(W 3-) 

(Corollary 7.7). 

In principle, we also allow W = V. In part  (a) of Theorem A this implies that  

the finitary orthogonal subgroups of finitary symplectic groups over finite fields 

of characteristic 2 are confined. 

THEOREM B: Let X be a confined subgroup of the special transvection group 

G -- T~(A, V) over the finite field F. Then there exist subspaces U <<_ V and F 

< A of finite codimensions, satisfying annr  U = 0 and annu F = 0, such that 

T~(r, U) < X. 

After submission of the present paper, A. E. Zalesskii made the authors aware 

of an unpublished handwrit ten manuscript by B. Hartley, in which Theorem B 

is proved too. 

Since every infinite-dimensional vector space V of cardinality R over a finite 
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field has 2 ~ subspaces of finite codimension, it follows that  in every classical fini- 

tary linear group G with natural  representation on V the normalizers of subspaces 

of finite codimension in V form a family of 2 ~ confined subgroups (Corollary 5.3). 

In view of Theorem A, and in view of the fact that  - -  due to [12]  there 

is a natural  one-to-one correspondence between non-trivial ideals in complex 

groups algebras of special transvection groups G on the one hand and finite- 

dimensional subspaces of the natural  module of G on the other hand, we formulate 

the following conjecture. 

CONJECTURE: The non-trivial ideals in complex group algebras of classical fini- 

tary linear groups G of isometries are in one-to-one correspondence with the 

isomorphism types of finite-dimensional subspaces of the natural module for G. 

The authors intend to study this relationship in a subsequent paper. 

The structure of the present paper is as follows. In Section 2 we treat  locally 

finite simple groups of p-type or oc-type. In Section 3 we recall the definition 

and some basic properties of the classical finitary linear groups. In Section 4 

we show that  proper confined subgroups X in classical finitary linear groups G 

exist only over finite fields, and that  the subgroups described in Theorems A 

and B are indeed confined. Section 5 is devoted to the study of the action of 

confined subgroups X on the natural  module of the classical finitary linear group 

G. In Section 6 some cohomological results are derived which will be needed to 

split certain groups and modules in the proofs of Theorems A and B. The proofs 

of the main results will then be given in Section 7. Finally, Section 8 contains 

the discussion of a couple of questions about confined subgroups raised by A. E. 

ZalesskiL 

The authors would like to thank S. Delcroix for making a preliminary ver- 

sion of his P h . D .  thesis accessible, and the following colleagues for stimulating 

discussions: S. Baratella, F. Dalla Volta, O. H. King, D. Luminati,  C. Praeger, 

S. Thomas, and A. E. Zalesskii. 

2. Groups of  p-type or oc-type 

Let G be a locally finite group. A K e g e l  cove r  in G is a family 

((Gi,Mi) [ i E I ) ,  where each Gi is a finite subgroup of G, and where Mi is 

a maximal normal subgroup in Gi, such that  for every finite subgroup F of G 

there exists some i E I satisfying F _< Gi and F N Mi -- 1. The sections G~/Mi 

are called the K e g e l  f a c t o r s  of the Kegel cover. I t  was proved in [16] that  every 

locally finite simple group has a Kegel cover. 
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From [4], Theorem 3.29, every locally finite simple group G is either finitary 

linear, of 1-type, of p-type (where p is a prime), or of oc-type. Here G is said to 

be of 1 - t y p e  resp. of p - t y p e ,  if every Kegel cover of G has an alternating Kegel 

factor resp. a Kegel factor which is a finite classical group defined over a field of 

characteristic p. 

We shall show now that certain group algebras of locally finite simple groups 

of p-type or oc-type have no non-trivial ideals. 

THEOREM 2.1: Let G be an infinite locally finite simple group with a Kegel cover 

whose factors are projective special linear groups. Suppose that K is a field of 

characteristic zero. I f  the group ring KG has a non-trivial ideal, then G is finitary 

linear. 

Proof: Let {(Gi, Mi)] i E I} be the Kegel cover. Assume that the group algebra 

KG has a non-trivial ideal. From [13], Theorem 1.1, the group G contains a proper 

confined subgroup X then, that is, there exists a finite subgroup F in G such 

that X g V) F ¢ 1 for all g E G. Without loss we may assume that F < Gi and 

F n M i  = 1 for all i. Let Gi/Mi  ~ PSL~ (V/). Consider the action of Gi on the set 

~i of right cosets of X N Gi in Gi via right translation. Since X N Gi is confined 

in Gi with respect to F,  the group F has no regular orbit on ~i- Therefore the 

projective degrees of some non-trivial element f E F in its action on the modules 

V/ are uniformly bounded by a function of IFI (see [4], Proposition 3.25). The 

diagonal homomorphism of G into the uttraproduct of the quotients Gi/Mi with 

respect to a suitable ultrafilter now yields a projective representation of G on 

the corresponding ultraproduct V of the V~ such that  f has finite projective 

degree. Since G is simple, and since the normal subgroup FGL(V) in GL(V) has 

trivial intersection with the group of scalars, we thus obtain a faithful finitary 

representation of G. (This nice kind of ultraproduct argument was by the way 

developed in J. I. Hall [8].) | 

Since by [4], Theorem 4.27 resp. Lemma 3.27 every group of p-type resp. of oo- 

type has a Kegel cover as in Theorem 2.1, the following corollary is an immediate 

consequence. 

COROLLARY 2.2: I f  G is a non-finitary locally finite simple group of p-type or 

of  oo-type, and i f  K is a field of characteristic zero, then KG has only the trivial 

ideals. 

Because of the above corollary the remainder of the present article is devoted 

to the study of periodic simple finitary linear groups. 
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3. Class ical  f in i tary  l inear groups  

Due to J. Hall [10], every non-linear finitary linear periodic simple group is one 

of the following. 

(1) an infinite alternating group Alt(~t), 

(2) a special transvection group T~(A, V), 

(3) a finitary sympleetic group FSp~(V, b), 

(4) a finitary special unitary group FSU~(V, b), 

(5) a finitary orthogonal group F ~ ( V ,  q). 

Here F is always a locally finite field, V is an infinite-dimensional F-vector space 

with non-degenerate form b resp. q, and A is a subspace of the dual space V* 

satisfying anny A -- 0. 

The ideal lattice of F(Alt(~)) for fields F of characteristic zero can be derived 

from [5] (see also [25], [28]). Moreover the confined subgroups of Alt(f~) are 

described in [26]. We shall therefore restrict our attention to groups of types (2) 

- (5) above, which we call classical  f in i tary  l inear groups. In this section we 

collect those features of these groups which will be essential in this paper. For 

further information the reader is referred to [10], Section 2. 

Let V be an infinite-dimensional vector space over the locally finite field F. 

For every x • V and every ~ • V* with x~ = 0, the t r a n s v e c t i o n  ~-~,x: V --+ 

V is defined via v~-~,x = v + ( v ~ ) x  for a l l v  • V. For A _< V* the spec ia l  

t r a n s v e c t i o n  group  T~(A, V) is given by 

Special transvection groups are generalizations of special linear groups: 

T~(V*, V) consists of all finitary transformations of V with determinant 1. The 

group T~(A, V) is simple whenever anny A = 0. Clearly, we call V the natura l  

m o d u l e  for T~(A, V). Moreover A will be referred to as the c o n a t u r a l  m o d u l e  

for T~(A, V). 
Let the vector space V be equipped with a s y m p l e c t i c  bilinear form b: V × V --+ 

F, that is, b(v, v) = 0 for all v • V. Such a form is n o n - d e g e n e r a t e  if its radical 

V ± is trivial. The f in i tary  s y m p l e c t i c  group  FSp~(V, b) is the group of all 

finitary isometries of b. It is simple whenever b is non-degenerate, and 

FSp~(V, b) = (~-v,x I x e V, and ~ = b(., ax)  for some a • F}. 

Suppose next, that the field F admits an involutory automorphism (~, and that 

a u n i t a r y  sesquilinear form b: V × V  -+ F is given by b(u, v) = b(v, u) '~ for all 

u, v E V. Again such a form is n o n - d e g e n e r a t e  if its radical V ± is trivial. 
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The f i n i t a r y  u n i t a r y  g r o u p  FSUF(V, b) is the group of all finitary isometries 

of b with determinant 1. It  is simple whenever b is non-degenerate, and then 

FSU~(V, b) is generated by all transvections T~,x satisfying (p = b(., ax) for some 

isotropic vector x C V and for some a c F with a s = - a .  

Finally, V may admit a q u a d r a t i c  form, that  is, a map q: V --~ F satisfying 

q(av) = a2q(v) for all a c F, v E V. The associated o r t h o g o n a l  bilinear form 

b: V x V -+ F is then defined via b(u, v) = q(u + v) - q(u) - q(v) for all u, v E 

V. We define V ± with respect to b. Now q is said to be n o n - d e g e n e r a t e  if the 

radical {v c V ± I q(v) = 0} is trivial. If  charF  # 2, then b determines q, and 

so the radical coincides with V ±. If char F = 2, then a non-degenerate quadratic 

form q can have a degenerate associated orthogonal form b, in which case we 

call q de fec t ive .  The f i n i t a ry  o r t h o g o n a l  g r o u p  F ~ ( V , q )  is the derived 

subgroup of the group of all finitary isometrics of q. It  is simple whenever q is non- 

degenerate. In the defective characteristic 2 case, Ff~(V,  q) TM FSp~(V /V±,b )  

where b is the bilinear form induced from b on V / V  ±. We may therefore always 

assume that  our orthogonal forms are non-degenerate. In general, the group 

Ff~(V,  q) is generated by the so-called Siegel  e l e m e n t s  (T, which are defined by 

the following conditions: 

(i) a is an isometry of q, 

(ii) ( o -  1) 2 = 0, and 

(iii) V((r - 1) is totally singular of dimension 2. 

The Siegel elements, resp. the transvections generating the classical finitary 

linear groups in cases (2) (4) above, are called r o o t  e l e m e n t s .  

Every countably-dimensional vector space V over a locally finite feld F, which 

admits a non-degenerate symplectic, unitary or orthogonal form b, has a basis 

B = {vn I n c N} such that  V is the orthogonal sum of the hyperbolic planes 

W~ = (v2~,v2n+l) (see Corollary 4.3). We call such a basis of pairwise or- 

thogonal hyperbolic pairs a s t a n d a r d  basis .  The flfll finitary linear group of 

isometrics of (IS, b) is s t a b l e  with respect to /3, that  is, every finite subgroup 

of G fixes all but finitely many vectors in B. Note also that  every basis B in 

the eountably-dimensional vector space V leads to a stable general finitary linear 

group GL~(V, B), and to a stable special finitary linear group SLF(V, B), which is 

a finitary transvection group (see [10], p. 152). In fact, every irreducible subgroup 

of FGL~(V), which is a c o u n t a b l e  finitary transvection group, is the stable spe- 

cial finitary linear group with respect to a suitable basis B of V (see [10], p. 154). 

We will also then call B a standard basis. 
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4. E x i s t e n c e  of  p r o p e r  con f ined  s u b g r o u p s  

In this section we will prove that  classical finitary linear groups contain proper 

confined subgroups if and only if they are defined over a finite field. We begin 

by mentioning two preparatory lemmata.  

LEMMA 4.1: Let V be a vector space over the field F, equipped with a non- 

degenerate symplectic, imitary or orthogonal form b. Suppose that U is a non- 

degenerate finite-dimensional subspace of  V. Then V = U @ U ± and U ±± = U. 

Proo~ Let d = dim~ U. Since U z is an intersection of d hyperplanes in V, we 

have dimE V / U  ± < d. But U A U ± = 0 by non-degeneracy of U. | 

LEMMA 4.2: Let V be an infinite-dimensional vector space over the field iF, 

equipped with a non-degenerate symplectic, unitary or orthogonal form b. Sup- 

pose in addition that the field F is perfect in the case when b is orthogonal and 

charF = 2. Then every finite-dimensional subspace U of  V is contained in a 

non-degenerate finite-dimensional subspace W of  dimension 2 • dimF U, which is 

an orthogonal sum of hyperbolic planes. 

Hyperbolic planes are generated by hyperbolic pairs. Note that  in the orthog- 

onal case a hyperbolic pair v, w is defined via b(v, w) = 1 and q(v) = 0 = q(w), 

where q denotes the corresponding quadratic form. 

Proof  of  Lemma 4.2: Let {v l , . . .  ,vk} be a basis of U. By induction over k, the 

subspace (v2 , . . . ,  Vkl is contained in a subspace W of V, which is an orthogonal 

sum of k - 1 hyperbolic planes. Now V = W ® W ±, and we can consider the 

component Wl of vl along W ±. It  suffices to embed Wl into a hyperbolic plane 

in W ±. 

Suppose first that  the characteristic of the underlying field is odd when b is 

orthogonal. If  wl is isotropic, then we choose some v C W ± \ (Wl)  ±. The 

subspace (wl, v) is non-degenerate, and hence a hyperbolic plane by [27], Lemma 

7.3. Next, let wl be non-isotropic. The infinite-dimensional non-degenerate 

space W ± (~ (wl) ± contains a hyperbolic plane H,  and there exists an isometry 

(wl} -~ H.  In this case it follows from Wit t ' s  Theorem (see [27], Theorem 7.4) 

that  some isometry in the classical finitary linear group on W ± carries Wl into 

H.  

It  remains to consider the case when b is the associated orthogonal form of a 

quadratic form q in characteristic 2. Fix v E W ± \ (wl}  ±. Since the field F is 

perfect, the non-degenerate space (IV, wl, v} ± contains a vector v'  with q(v') = 
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q(v). It  follows that  v + v' is singular and b(wl, v + v') ¢ O. Then again [27], 

Lemma 7.3 shows that  w~ and v + v'  generate a hyperbolic plane. 1 

COROLLARY 4.3: Every countably-dimensional subspace of a vector space V 

with non-degenerate symplectic, unitary or orthogonal form is contained in a 

countably-dimensional orthogonaI sum of hyperbolic planes in V. (Here we sup- 

pose in addition that the underlying field is perfect in the case of an orthogonal 

form in characteristic 2.) 

Proof: Let {vi ] i E N} be a basis of the subspace U. Apply Lemma 4.2 

recursively to construct a hyperbolic plane Hi+l  in V~ ± = (~j<_i Hi)  ± such that  

the projection of vi onto V/± with respect to the decomposition V = V/@ V/± is 

contained in H / + I .  Then U is contained in the orthogonal sum of the Hi. | 

LEMMA 4.4: Let V be a vector space over the field IF, equipped with a non- 

degenerate symplectic, unitary or orthogonal form b. Suppose in addition that 

the field F is perfect in the case when b is orthogonal and char F : 2. / f  U is 

a finite-dimensional subspace of V, then dim~ V/U  ± : dim~ U and U ±± -- U. 

Moreover, (U N W)  ± : U ± + W ± for every finite-dimensional subspace W of V.  

Proof: Let B be an F-basis of U. Then U ± is the intersection of the hyperplanes 

{v e V I b(v,u) = 0 }  (u e B). Therefore d im~V/U ± <_ dim~U. O n t h e o t h e r  

hand, U is contained in a non-degenerate finite-dimensional subspace L of V 

by Lemma 4.2, and so L / L  N U ± TM L + U ± / U  ± < V /U  ±, whence dim~ U = 

dimF L / L  N U ± <_ dim~ V/U  ±. 

Clearly U < U ±±. Consider a direct complement C to U z in V. Then 

U ±± ~ U±±/(U±+ C) ± = U±±/U±±n C ± ~= U±±+ C ± / C "  <_ V/C ±. I t  

follows that  dim~ U ±± < direr V / C  ± : direr C : dim~ V/U  ± : dim~ U. 

Clearly, U ± + W ± _< (U N W) ±. Conversely, for every non-degenerate finite- 

dimensional subspace L of V containing U + W, we have L n (U n W) ± : 

( L A U ± ) + ( L A W  ± ) <_ U ± + W ±. And so the last assertion follows from Lemma 

4.2. I 

For the proofs in this section we need to establish certain local systems in 

classical finitary linear groups G. In the case when G is a group of isometries, we 

let G be the set of classical linear subgroups Gu = N~(U )N  Cc(U ~-) ~_ G, where 

U ranges over all finite-dimensional non-degenerate subspaces U of V. Lemmata  

4.1 and 4.2 ensure that  ~ is a local system in G. 
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In the case when G = T~(A, V) is a special transvection group, we also have 

the conatural action of G on V*. For every finite subgroup F of G there exist 

finite-dimensional subspaces U _< V and P _< A satisfying IV, F] = [U, F] _< U 

and [A, F] = IF, F] < F, as well as annr  U = 0 and annv F = 0 (see [10], p. 153). 

We write F ± = a n n y  F. Then F is contained in the subgroup 

Gr,u = No(U)  N Ca(F  ±) =~ T~(F, U) =~ T~(U*, U) --~ SLy(U) 

of G. And so we let g denote the local system of all these groups Gr,u. 

THEOREM 4.5: Let G be a classical finitary linear group defined over an infinite 

locally finite field IF. Then G has no proper confined subgroups, and hence the 

ideal lattice in KG is trivial for any field K of characteristic zero. 

This result was already observed by A. E. Zalesskii in [29], Proposition 10, 

modulo [29], Conjecture 5 which was proved later on by D. Gluck (see [11], 

p. 303). 

Proof of Theorem 4.5: Let V denote the natural IFG-module. Suppose that  

X is a confined subgroup of G with respect to the finite subgroup F,  that  is, 

x g  n F ¢ 1 for all g C G. Consider the local system ~ above. Choose H = Gu 

(resp. H = Gr,u)  such that  F < H and IV, F] < U. Then F intersects the center 

Z of H trivially. Hence either (X N H ) Z / Z  is confined in H / Z  with respect to 

F Z / Z ,  or X N H _< Z. Now [11], Theorem B implies that  X n H is either central 

in H or coincides with H.  

From passing to a local subsystem of G we may assume that  just one of these 

two alternatives occurs throughout. In the first case X is central in G, whence 

X = 1, a contradiction. In the second case we obtain X = G. | 

The above theorem allows us to restrict our attention to classical finitary 

linear groups defined over f in i te  fields. These groups contain proper confined 

subgroups. 

PROPOSITION 4.6: Let G be a classical finitary linear group of isometries, defined 

over a finite field IF, and let V denote the natural IFG-module. Suppose further 

that W is a subspace of finite codimension in V.  Then every subgroup of finite 

index in N o ( W )  is confined in G. 

Note that  overgroups of confined subgroups are confined too. 

Proof of Proposition 4.6: Let X be a subgroup of finite index n in NG(W).  

From Lemma 4.2, there exists a non-degenerate subspace U in V, which is an 
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orthogonal sum of d + g hyperbolic planes, where d denotes the codimension of 

W in V, and where ~ is so large that every finite classical group with natural 

module of dimension 2g contains at least n + 1 elements. We choose F = Gu = 

Na(U)  N Ca(U±) .  For any g E G, the dimension of W g  n U is at least d + 2~. 

Therefore W g  N U contains a non-degenerate subspace Y of dimension 2L It 

follows that G y  <_ F n N c ( W g )  = F N Na  (W)  9 contains at least n + 1 elements. 

Two of them lie in a common coset of Xg in Na(U)  g, whence F ~ X  g is non-trivial, 

as required. I 

For finitary symplectic groups over fields of characteristic 2 we can sharpen 

Proposition 4.6 as follows. 

PROPOSITION 4.7: Let G be a finitary symplectic group, defined over a finite field 

F of  characteristic 2, and let V denote the natural ~'G-module, with symptectic 

from b. Suppose further that W is a subspace of  finite codimension in V,  and 

that H is the finitary orthogonal subgroup of  G, which is defined with respect 

to some quadratic form q on V,  with associated bilinear form b. Then every 

subgroup of finite index in N H ( W )  is confined in G. 

Proof'. We can proceed literally as in the proof of Proposition 4.6, noting that 

for every g C G, the conjugate H g is the finitary orthogonal group with respect 

to the quadratic form 0", defined via ~(v) = q(vg -1) for all v E V (with associated 

bilinear form b). I 

PROPOSITION 4.8: Let G = T~(A, V) be a special transvection group over a 

finite field F. Suppose that U _< V and F _< A are subspaces of  finite codimensions. 

Then T~(F, U) is confined in G. 

Proof: Choose finite-dimensional subspaces A0 < A and TWo _< V such that 

annA° W0 = 0 and annwo A0 = 0, and such that dim~ A0 >_ 2 + dim~ A / F  and 

dim~ Wo _> 1 + dim~ V/U.  Let F = Gz~o,Wo = Na(Wo)  M Ca(A~) ,  and consider 

any g E G. There exists a non-zero vector w C Wog N U, and ann/, w has 

eodimension at most 1 in A. Hence there exists a non-zero ~ E A0g n annr w. 

Therefore F g n T~(F, U) contains the transvection ~-~,~. I 

We can also relate confined subgroups of primitive finitary linear groups G to 

confined subgroups of their derived subgroup G/. 

PROPOSITION 4.9: Let V be a vector space over the finite field IF, and suppose 

that G is a finitary linear group of  isometrics of  a non-degenerate form on V which 
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contains the corresponding classical finitary linear group. Then the subgroup X 

of  G is confined in G i f  and only i f  X N G' is confined in G ~. 

Proof: Suppose first that  X N G I is confined in G t, with respect to the finite 

subgroup F _ G I. For every g E G there exists x E G such that  IF, gX] = 1. I t  

follows that  F g = F Ix'g]. Note that  Ix, g] E G'. And so this shows that  X n G ~ 

is confined in G with respect to F. But then also the overgroup X of X N G t is 

confined in G with respect to F.  

Conversely, let X be confined in G with respect to the finite subgroup F < 

G. Since the field F is finite, the kernel K of the determinant map G -+ F has 

finite index n in G. From consideration of the action of F on V it is easy to 

find G-conjugates F 1 , . . . ,  F,~+I of F with pairwise trivial intersection. Consider 

= ( F I , . . . ,  Fn+I). For every g E G, the intersection X N Fg contains n + 1 

non-trivial elements, because X n F~ is non-trivial. Hence X n Fg also contains 

a non-trivial element of determinant 1. This shows that  X n K is confined in 

K with respect to the finite subgroup F N K.  In most cases, K coincides with 

G r. In all other cases the above argument can be applied with the canonical 

epimorphism G --+ G I G  ~ in place of the determinant map. I 

5. T h e  a c t i o n  o f  con f i ned  s u b g r o u p s  

I t  is our next aim to find out how confined subgroups X of classical finitary linear 

groups G act on the natural G-module. We first study the possible shape of an 

X-composit ion series in G. 

PROPOSITION 5.1: Let G be a classical finitary linear group, defined over the 

field F, and let V denote the natural ]FG-module. Suppose that X is a confined 

subgroup of  G. Then there exists a constant c (depending on X )  such that every 

X-invariant subspace of  V has finite dimension or codimension, bounded by c. 

Proof." Let X be confined with respect to the finite subgroup F of G, and let W 

be an X-invariant subspace of V. Suppose first that  G is a group of isometries 

of a non-degenerate form b on V. By Lemma 4.2 there exists a non-degenerate 

subspace U in V, which is a direct sum o fn  pairwise orthogonal hyperbolic planes, 

such that  [V,F] _< U and [U ± ,F ]  = 0. Choose c = 4n + 2. Let W0 = W N W ± 

denote the radical of W, and choose non-degenerate subspaces Wi such that  

W = W o ® W 1  a n d W  ± = W 0 @ W 2 .  

Assume first that  dim~ W0 = m >__ 2n + 2. Arguing as in the proof of Lemma 

4.2 we can recursively choose vectors s l , t l , . . . ,  sm, t,~ E V in this order, such 
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tha t  si E Wo, and such tha t  Hi -- (s~, ti) is a hyperbolic plane or thogonal  to 

H1 O . . .  @ Hi -1  for all i (where in addition, in case b is the associated or thogonal  

form of a quadrat ic  form q on V, we require tha t  q(ti) = 0). For each i < n, the 

space Zi ---- (t2i+l ÷ 82(i+1), t2(i+l)) is a hyperbolic plane with the proper ty  tha t  

every non-zero vector in Zi has non-trivial projection onto T = ( t l , . . . ,  tin) with 

respect to the decomposi t ion H -- W0 ® T. The same holds for the or thogonal  

sum Z = Z I ® . . . ® Z n .  It  follows that  Z N W ~  = Z N ( T ® W o ) N W ~  <_ ZNWo = O. 

Using Wi t t ' s  Theorem (see [27], Theorem 7.4), choose g E G such tha t  U9 = Z, 

and consider x c X N F  9. From U g n W o  = ZNTW0 = 0 we obtain V = 

(Vg)J-+Wo ±, and this yields [V, x] = [(Ug)±+Wo ±, x] = [W0 ±, x] < Wo±NU9 < 

W0 ± n Z = 0. But  then X n F9 is trivial, in contradict ion to confinedness of X 

with respect to F .  This contradict ion shows tha t  dim~ W0 _< 2n + 1. 

Assume next tha t  d im~Wi _> 2 n + 2  for i = 1, 2. Then  bo th  W1 and W2 

contain an isometric copy of U. Hence we can find g ~ G such tha t  Ug embeds 

into Wx ® W2 in such a way, tha t  every non-zero vector in Ug projects non- 

trivially onto both  W1 and W2. In particular,  Ug n W = 0 = U g n  W ±. Since 

U is finite-dimensional, there exists a finite-dimensional subspace R in W such 

tha t  U g n  R ~ = 0. Note tha t  U9 n R C_ Ug n W = 0. Moreover, [ R , X  n F g] C_ 

W ~ Ug = 0, whence R and R ± are (X N Fg)-invariant.  And so we reach the 

same contradict ion as before with R in place of Wo. This contradict ion shows 

t h a t d i m ~ W i < 2 n + l  f o r i = l o r i = 2 .  

It  follows from the above tha t  every finite-dimensional X-invar iant  subspace of 

V has dimension at most  c. Assume now that  W is an infinite- 

dimensional X-invar iant  subspace of V with dim~ V / W  > c. Then dim~ W ± < c. 

Let D be a direct complement  to W + W  ± in V. Since both  W1 and W 2 ® D  con- 

tain an isometric copy of U, there exists g E G such tha t  Ugn W = 0 = Ug N W ±. 

In particular,  [W, X n Fg] C_ W n Ug = 0. The vector space V carries a vector 

space topology where the subspaces L ± with dime L < cx~ form a basis of open 

(and closed) neighbourhoods of the point  0 (see [6], Section 1.8 for further de- 

tails). This topology is Hausdorff, since V is non-degenerate.  And every element 

from G is a homeomorphism of V. Therefore X N F g does not only act trivially 

on W,  but  also on the closure W ±± of  W in V. But  then X N F g acts trivially 

on W ±± + Ug ± = V, in contradict ion to confinedness of X.  

Suppose finally tha t  G = T~(A, V) is a special t ransvection group. Wi thou t  

loss we may  assume tha t  F = Gr,u for certain finite-dimensional subspaces U _< 

V and F < A. Note tha t  V = F ± ® U. Choose c = d im~U.  

Assume that  d ime  W > c and d ime  V / W  > c. There exists g C G such tha t  
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U <_ Wg.  Now Wg = (Wg N F ±) • U, and Wg  n F ± has codimension larger 

than c in F ±. Choose h E G such that  h acts like the identity on F ±, and 

such that  [u,h] E F ± \ W g  for every non-zero u E U. Then V = F ± + W g h  

and W g h n U  = 0. For x E F M X  gh we then have IV, x] = [F ± + W g h , x ]  = 

[Wgh, x] <_ W g h  n U = 0. This shows that  F N X gh is trivial, in contradiction 

to confinedness of X.  | 

COROLLARY 5.2: Let V be the natural module of the classical finitary linear 

group G, and suppose that X is a confined subgroup in G. Then there exist 

a unique minimal X-invariant subspace W of finite codimension in V, and a 

unique maximal X-invariant subspace Wo in W.  In the case when G is a group 

of isometries of a non-degenerate form on V, the subspace Wo coincides with the 

radical W n W ± of W.  

Proof: It  suffices to prove that  Wo = W N W ± in the case when G is a group 

of isometries. Clearly, W M W ± is contained in W0. On the other hand, W~ has 

finite codimension in V, and so W _< W~.  But then W0 = W0 J-± _< W ±, so that  

Wo <_ W n W  ±. | 

As a byproduct  we note that  there are many confined subgroups in classical 

finitary linear groups defined over finite fields. 

COROLLARY 5.3: Suppose that the natural module V of the classical finitary 

linear group G has cardinality R and is defined over a finite field. Then G has 2 ~ 

confined subgroups. 

Proof: Clearly there are 2 ~ subspaces Ua (c~ < 2 ~) of finite codimension in V. By 

Propositions 4.6 resp. 4.8, each X~ -- Nc(Ua) is confined in G. From Proposition 

5.1, there is a unique minimal X~-invariant subspace W~ of finite codimension 

in V. Since Wa C_ Us, and since V/Wa  has just finitely many subspaces for fixed 

a,  we conclude that  I{W~ ] a < 2e}l = 2 ~. Hence we also get 2 ~ distinct groups 

X~. | 

We now focus our at tention on the action of X on its unique infinite- 

dimensional composition factor W/Wo in V. 

LEMMA 5.4: In the situation of Corollary 5.2, let C = CG(V/W)  nCc(Wo) ,  and 

let R -- C c ( W / W o )  be the stabilizer in G of  the series V >_ W > Wo > O. Then 

(x  n C)R/R is a confined subgroup in C/R. 

Proof: Let X be confined with respect to the finite subgroup F of G. Choose 

a finite-dimensionM non-degenerate subspace U in V such that  IV, F] _< U and 
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V = U + Cv(F) .  There exists g E G such that  Ug < W and Ug N W0 = 0. Now 

F9 < C and F g M R = 1. Hence (X  N C ) R / R  is confined in C / R  with respect to 

FgR/R .  I 

We shall see later in Lemma 7.3, tha t  the derived subgroup of C / R  acts 

on W/Wo as a classical finitary linear group. Therefore we further examine 

irreducible confined subgroups. 

LEMMA 5.5: Let b be a non-degenerate symplectic, unitary or orthogonal form 

on the vector space V. Then Cv(g) = IV, g]3_ for any finitary isometry g orb. 

Proof: Consider w E Cv(g).  For every v C V we have b([v,g],w) = b(vg, w) - 

b(v, w) = b(vg, wg)-b(v ,  w) = O. This shows tha t  Cv(g) <_ [V, g]±. The assertion 

now follows, since dim~ V/[V, g] 3_ = dim~[V, g] = dim~ V / C v  (g). I 

PROPOSITION 5.6: Let G be a classical finitary linear group, defined over the 

field F, and let V denote the natural FG-module. Then every irreducible confined 

subgroup of G acts primitively on V. 

Proof: Let X be confined with respect to the finite subgroup F of G. Assume 

first tha t  X is total ly imprimitive. Then the finite-dimensional subspace [V, F]  

is contained in a proper  X-block in V. Hence, for every g E G, the intersection 

F ~ A X normalizes the blocks in the corresponding system E of imprimitivity. 

In  particular,  the normalizer of E is confined in G with respect to F .  But  this 

contradicts  Proposi t ion 5.1. 

Assume next tha t  X is almost-primitive. Then  V admits  a proper system 

E = {V~ [ a C E} of imprimit ivi ty  under the act ion of  X,  and X acts as the 

al ternat ing group or as the full group of finitary permuta t ions  on E. Let ai (i C N) 

be pairwise distinct elements in E. 

Suppose first tha t  G is a special t ransvection group. Let {Ul, • • . ,  u~} be a basis 

of U = [V, F].  For each i we choose 0 ~ uij E V~3~+j (j = 0, 1, 2). There exists 

g C G with uig = vi = ui0 + uil + ui2 for all i. I t  follows tha t  U9 N (V~ + V~) = 0 

for all a , r  C E. Consider any x E F g N X .  For every a we have [V~,x] < 

Ug n (V~ + Vox) = 0, and so x must  be trivial, in contradict ion to confinedness 

of  X with respect to F .  

Suppose now tha t  G is a classical finitary linear group of isometries of a non- 

degenerate form b on V. In this case Lemma 4.2 ensures tha t  [V, F]  is contained 

in a finite-dimensional subspace U of V which is an or thogonal  sum of hyperbolic 

planes. Since V is an irreducible FX-module ,  it can in part icular  not  be a 
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permutat ion module under the action of X. Hence there exists a non-trivial finite 

subgroup H of X which normalizes V~ and acts irreducibly on Vo,. Since X acts 

highly transitively on E, we may assume that  H fixes V~ 2 • Vo a @ V~ 4 pointwise. 

Let x E X induce the permutat ion (ala2)(a3a4) on E. Then K = [H,x] is 

contained in X,  and Lemma 5.5 gives 

V~ = C v ( K )  <- [V,K]± = (Vo, @ V~2) ±. 
O'~{~1,0"2 } 

Since b is non-degenerate, the codimension of (Vo 1 @ Vo2) ± in V equals 

dim~(V~ @ V~).  Therefore (Va~ @ V,2) ± = @o~t{ol,o~lV~, whence V~ ® Vo~ 

is non-degenerate. From high transitivity of G, we see that  V~ 1 ® V~ a is non- 

degenerate too. But V~ a is orthogonal to Vo 1. Hence Vo I and then every Va 

is non-degenerate. And V~ is orthogonal to V, for any two distinct elements 

O',TEV. 
Let p = char F. If b is unitary, or if b is orthogonal and p > 2, then we can 

choose non-isotropic vectors uij E V~(p+l)i+~, and define vi = Uio + ""  + Uip. 

Then the subspace T = ( v i i i  = 1 , . . . , n  + 2) is non-degenerate and contains 

an isometric copy of U. In particular there exists g E G such that  Ug <_ T,  

and we may argue as in the special transvection group case. Moreover, if b is 

symplectic, then every V~(p+~)~+¢ contains a hyperbolic pair sij, tij ,  and U has a 

basis consisting of k pairwise orthogonal hyperbolic pairs. We then consider the 

subspace T generated by the pairwise orthogonal hyperbolic pairs si = Sio + "  • + 

8 i p ,  t i  : r iO ~ -  • ""  -~ tip, and argue as above. Finally, let b be orthogonal and p = 

2. Put  Vk = V~3~ ® Va~k+~ @ V~k+2 for every k. Then Vk contains a hyperbolic 

pair Vk, wk (see [27], pp. 138-139), which we can use as in the symplectic case in 

place of the hyperbolic pair in a single block V~ k . 

Since the irreducible finitary linear group X is neither totally imprimitive nor 

almost primitive, it must be primitive. | 

LEMMA 5.7: Let  V be an infinite-dimensional vector space over the field ]K, 

and let F be a finite proper subfield of  K. Suppose that  b is a non-degenerate 

symplectic,  unitary or orthogonal form on the F-space V.  For every n E N there 

exists a non-degenerate F-subspace Un of  dimension 2n in V which does not  

contain any non-zero K-subspace. 

Proof." We shall construct U,~ recursively from U0 = 0. Suppose then that  U,~-I 

has been found for some n. Because n-dimensional F-spaces are finite, we may 

assume without loss that  ]K is finite. Let v E (KU,~_I) ± be a non-zero vector, 
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which is chosen non-isotropic in the unitary or orthogonal case. Assume that  

the F-space W generated by U~-I  and v contains a non-zero K-subspace. Then 

there exists u E Un-1 such that  A(u + v) c W for every A E K. Because F < K, 

there exists 0 ¢ A c K such that  A ( u + v )  c Un-1. Thus u + v  C KUn-1, 

whence v E NUt-1  too, a contradiction. Hence W does not contain a non-zero 

K-subspaee. 

Since ( K U ~ _ I ) ± \ ( K v )  ± is infinite while KW is finite, there exists 

z C ((KU~_I) ± \ ( K v )  ±) " ,KW.  We let Un be the F-space generated by W and 

z. As before, U~ does not contain any non-zero K-subspace. Moreover, Fv + Yz 

is non-degenerate and contained in (KUn_I) ±. Therefore U~ is non-degenerate 

as the orthogonal sum of Un-1 and Fv + Fz. I 

COROLLARY 5.8: Let the classical finitary linear group G have its natural module 

defined over the finite field F, and assume that X is a primitive confined subgroup 

in G. Then CEnd(V)(X) = F '  idv. 

Proof: Let V be the natural YG-module, and let X be confined with respect 

to the finite subgroup F of G. Assume that  C = CEnd(V)(X)  > F" idv. From 

Sehur's Lemma, C is a skew field, and so it contains a field K > F. We can 

consider V also as a vector space over K. Let U be a finite-dimensional subspace 

of V containing IV, F]; here we choose U non-degenerate in the case when G is not 

a special transveetion group. From Lemma 5.7 there exists a (non-degenerate) 

F-subspaee W in V with dim~ W = dimF U, which does not contain any non- 

zero K-subspace. Now Ug = W for suitable g E G. Consider some x E F9 N X. 

Since x is K-linear, [V, x] is a N-subspace, contained in IV, Fg] <_ Ug = W.  It  

follows that  [V, x] = 0. And this shows that  F 9 n X is trivial, in contradiction to 

confinedness of X. I 

PROPOSITION 5.9: Let G be a classical finitary linear group over the fn i te  field 

F, and let V be the natural FG-module. Suppose that X is a primitive confined 

subgroup in G. Then the commutator subgroup X t is a classical finitary linear 

group over a subfield K ofF, and V = F®K W,  where W denotes the natural KX-  

module (or the conatural module in the case when X '  is a special transvection 

group). Moreover X <_ Aut(X ' ) .  

Proof: From [18], Theorem B, the derived subgroup X '  is simple, and X _< 

Aut (X ' ) .  Furthermore, X '  is either an alternating group or a classical finitary 

linear group, by J. Hall 's classification [10], Theorem 1.3. 
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Assume tha t  Alt(E) < X <_ FSym(E)  for some infinite set E. Then V is the 

natural  YX-module from [2], Theorem B or [9], Theorem 8.2, tha t  is, V has an 

Y-basis of the form B = {vo I a C E'},  where v~ = a - a0 and E '  = E \ { a 0 }  for 

a fixed a0 E E. For convenience, we choose pairwise distinct elements ai E E ~ 

(i e N). 

Suppose tha t  G is a classical finitary linear group of isometries of a non- 

degenerate form b on V. Since X acts highly transitively on E, there exist 

c, d c F such tha t  b(v~, v~-) = c for all a ¢ ~-, and b(v,,, v~) = d for all a. Consider 

x -= (cr0al)(a2a3) e X.  Clearly, c = b(VfflX, Vffzix ) : b ( - - V f f l , V o -  4 - -  VO-1) : - - C - } - d ,  

and so d = 2c. Because the form b is non-degenerate,  it is clear tha t  c # 0. 

We can show now tha t  V, -- ( v~ l , . . . ,  v~.) is non-degenerate for n ~ - 1  modp ,  
n 

where p = charY: Assume tha t  w = E i = I  )~iVo-i is a non-zero vector in the 

radical of V, for certain Ai E F. Then 0 = b ( w , v ~ j )  = c .  (Aj + ~ i  Ai) for every 

j ,  whence Ai = Aj for all i , j .  We may thus assume tha t  w = ~ i = 1  v~ .  But  now 

0 = (w, v~l) = n + 1, in contradict ion to our choice of n. 

Let X be confined with respect to the finite subgroup F in G. After conju- 

gation with some element from X we may  assume tha t  [V, F] _ V, for some 

n ~ - l m o d p .  Let wi = v~+~<~_l)p+ ~ + " "  + v~+2~p for 1 < i < n. Straight- 

forward calculations show that  each wi is isotropic resp. singular, and perpen- 

dicular to each v~ which does not occur in the expansion of wi with respect 

to the basis B. Therefore the assignment vi , > v~ + wi defines an isometry 

V, > (V~l + W l , . . . ,  va.  + w,},  which is induced from some g E G. It  follows 

tha t  U g N ( v ~ , v ~ , v t ,  } = 0 for a l l a ,  7 , #  E E' .  Consider any x c F g N X .  For 

every a E E '  we have [v~, x] C Ug N (v,,, v~,~, v~ox } = 0. This shows tha t  Fg N X 

must  be trivial, in contradict ion to confinedness of X with respect to F .  

From the above contradiction, G must  be a special t ransvection group. Again 

we may  assume tha t  IV, F] < V, for some n. But  now there exists g E G with 

u~g = v ~ 4 ~ + . . . + v ~ + 3  for 1 < i < n. And so we reach the same kind of 

contradict ion as before. 

We have now proved that  X '  is a classical finitary linear group, defined over 

some field K In the case when X '  is a group of isometries of a non-degenerate 

form, the remaining assertions of the proposit ion will be deduced from applying 

[22], Theorem A. In the notat ion of this theorem, we let K = K and R = F. 

Thus M is just  an F-vector space. If  its F-dimension is d, then M ®~ N is the 

direct sum of d irreducible YX'-submodules ,  whence d : 1. Since M is also a ]K- 

module,  we have K _ F, and V = Y®~ W for the natural  K X ' - m o d u l e  W.  In the 

case when X '  is a special t ransvection group, we similarly apply [22], Theorem 
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B. | 

In the sequel we shall frequently consider elements in classical finite groups 
G as matrices. Suppose that the finite-dimensional vector space V with non- 
degenerate symplectic, unitary or orthogonal form ~ is an orthogonal sum of 
hyperbolic planes. There exists a decomposition V = 1/1 ® V.2 into two totally 
isotropic subspaces V~. If a basis of V is the union of suitable bases of V1 and of 
V2, then the form ~ is given by its Gram matrix 

(_0 I I 0 ) r e s p .  ( 0  I I0). 

And every isometry 

of ~ satisfies 

(+0I ~ ) =  ( B  A: DC:) ( 0+I ~ ) ( A  D B )  

~ A tC  + CtA  A tD- t -C tB '~  
~, B t C  :1: DtA  B t D  -t- D t B  ] 

where the superscript t denotes transposition when the form is symplectic or 
orthogonal, and where t denotes transposition and application of the involutory 
field automorphism when the form is unitary. This equality holds if and only if 

(1) AtD ~= C tB  = I, and 

(2) AtC and B t D  are symmetric in the symplectic case, resp. antisymmetric 
in the unitary or orthogonal case. 

In particular, if V1 and 1/2 have even dimension, then for any A, # from the 
underlying field, we may choose 

( / I  # I  ) ((,~# + 1 ) I - # I )  t 
A =  ( A # + I ) I  ' D =  -AI  I ' 

and B = C = ( 0 0  00). 

Note that in the orthogonal case, this choice is also compatible with the quadratic 
form from which n is derived, provided that the basis consists of singular vectors. 

Consider a vector space V isometric to V. Let g act on V and on V as described 
by the above choice of matrices. Then g is a commutator in the isometry group 
of V • V, and hence an element in the corresponding classical group. 
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LEMMA 5.10: Let W and V be infinite-dimensional vector spaces over fields K < 

F (resp.), and let ~ resp. b be non-degenerate symplectic, unitary, or orthogonal 

forms on W resp. V. Let X resp. G be the corresponding classical finitary linear 

groups. Suppose that X < G and V = F ®• W.  Then every isotropic vector in 

(W, ~) (resp. singular vector when the form ~ is orthogonal) is isotropic in (V, b) 

(resp. singular when the form b is orthogonal), and there exists 6 ~ ]F such that 

b(u, v) = 6 for every hyperbolic pair u, v in (W, ~). 

Proof: We prove first that every hyperbolic pair Uo, Vo in (W, n) generates a 

hyperbolic plane in (V,b). Let Uo be the K-span of Uo, Vo. For i = 1 , . . . , 6 ,  

consider a hyperbolic pair ui, vi in (Uo ®. . .  ® Ui-1) ± with respect to g, generating 

the K-space Ui. Then there exists an element x E X, which fixes the orthogonal 

of Uo®. . .®U3 in (W, a) pointwise, and whose action on Uo®Ut resp. on U2@Ua 

is described by the matrix 

1 1 0 0 )  
1 2 0 0 
0 0 2 - 1  
0 0 - 1  1 

resp. its inverse, relative to the basis {uo, u~, vo, v~} resp. {u2, u3, v2, v3}. The 

eigenvalues of this matrix are different from 1, and hence 

IV, : (Uo e... • u3). 

It now follows from Lemma 5.5 that IV, x] is non-degenerate with respect to b 

too, and that [V, x] ± = Cy(x)  is independent of the form. 

As above there exists an element y E X, such that 

[V,y]=F®K(Uo®U4®UseU6) and [V,y]==Cv(y). 

Also [V, y] is non-degenerate with respect to both forms, and [V, y]± = Cv(y)  is 

independent of the form. However, 

(FOK Uo) = (IV, x] n [v, y])" = + IV, y]" 

is then independent of the form too. In particular, U0 = F®~U0 is non-degenerate 

in (V, b). 

We shall prove next that the hyperbolic pair uo, vo in (W, a) consists of vec- 

tors which are isotropic resp. singular in (V, b). In the case when the charac- 

teristic is 2 and b is the associated orthogonal form of a quadratic form q on 
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V, we consider the above element x E X _< G. Obviously, q(uo) = q(uox) = 

q(tt0 + Ul) = q(u0) + q(Ul) n a b(tto,ttl). Hence 0 = q(ul) = q(ulx) = q(uo). 

Similarly, q(vo) = 0 = q(vl). In all other cases, we consider the transformation 

z E X, which fixes the orthogonal of Uo (9. .-  ® U3 in (W, n) pointwise, and whose 

action on Uo ® . "  ® U3 is described by the matrix 

(i 1 °  Oo 1 1 o , i) 

relative to the basis {no, ul,  vo, vl} resp. {u2, u3, v2, v3}. Then 

< [v, z] n C v ( z )  = [v, n [v, z] 

by Lemma 5.5, and so u0 is isotropic with respect to both  forms. This applies 

to any isotropic vector in (W, ~). By Wit t ' s  Theorem (see [27], Theorem 7.4), X 

acts transitively on the set of hyperbolic pairs in (W, ~), and this furnishes the 

existence of 5. | 

PROPOSITION 5.11: In the situation of Proposition 5.9 we have K = F. 

Proof." Assume that  there exists # E F \ K. Note that  X acts on V by matrices 

with entries from K, relative to a K-basis B of W. Let X be confined with respect 

to the finite subgroup F of G. 

We first consider the case when X '  = TK(F, W) is a special transvection group. 

Assume that  G is a classical finitary linear group of isometries of a non-degenerate 

form b on V. As in the proof of Lemma 5.10 there exists x E X '  such that  

dim•[W,x] = 4 and W = [W,x] ® Cw(x) .  Let U = [W,x]. Lemma 5.5 gives 

that  U = [V, x] is non-degenerate with respect to b. From U = F®K U we obtain 

that  b[v×u 7 ~ O. However, Nx,(U)  acts on U as a full general linear group, 

and in particular transitively on the set of pairs of K-independent vectors. Let 

u, v, w e U be K-independent. Clearly b(u, v) = b(u, u+v) = b(u, u)+b(u, v), and 

so every vector in U is isotropic. Moreover, b(u, v) = b(u, v+w) = b(u, v)+b(u, w) 

yields b(u, w) = 0. Altogether this contradicts blvxu ¢ O. 

Hence G is a special transvection group T~(A, V) too. We may assume that  

IV, F] < U1 and V = U I + C v ( F ) .  Let U2 be a further subspaee of V, with 

dim~ U,  = dim~-U2 and U1 ( )U2 = 0, such that  U1 and U2 are generated by 

subsets B1 and B2 of B. Then there exist finite-dimensional subspaces Ao < A, 

and U _< V containing U1 ® U~, such that  annAo U = 0 and a n n u A o  = 0. 
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Now A~- is a complement to Y in Y such that NG(U) M CG(A~) induces the full 

SLy(U) on U. Choose ui 6 Ui, and let B1UB2 = {ul, u2} U B0. There exists g E 

No(U1 GU2), which fixes B0 and A~ pointwise, and whose action on Ful @Fu2 

is described by the matrix 
( 1  ~ ) 

1 # + 1  " 

Since X is confined, there exists a non-trivial element x 6 F N X g. It follows 

that  0 ¢ [V,x] = [Bg, x] < [V,F] n [Bg, Xg] < Ul n KB 9. So we consider 

0 ¢ w • U1 A NB 9. There must exist a, b e K such that 

w • aulg + bu2g + ]KBo = a(ul + u2) + b(p~ul + (tt + 1)u2) + KB0. 

Comparing coefficients at u2 we see that a + b(# + 1) = 0, whence a = 0 = b, 

a contradiction. This contradiction shows that  the assertion of the proposition 

holds when X '  is a special transvection group. 

Suppose next that X '  is a classical finitary linear group of isometries of a non- 

degenerate form g on W. If G is a special transvection group, we can argue 

as above. Hence G is a classical finitary linear group of isometries of a non- 

degenerate form b on V. Let U1 be an orthogonal sum of hyperbolic planes in 

(W,~) such that IV, F] <_ U1 = F ® ~  Vl and Y = Vl  + C v ( F )  (Lemma 4.2). 

Let U2 _< Up be isometric to U1 with respect to to, and let U = U1 @ U2. We 

may assume that  B is the union of a K-basis of U ± with ]K-bases of U1 and 

U2 consisting of pairwise orthogonal hyperbolic pairs. Let ui, vi be the first 

hyperbolic pair in the basis of Ui, and let Bo = B \ { u l ,  u2, vl, v2}. Let U be the 

F-subspace of V spanned by Ul, u2, Vl, v2. Due to Lemma 5.10, the forms ~IV 

and big have Gram matrices 

(0 i) (0 
=hi 0 resp. =]=(hi)t 

relative to {Ul,U2, Vl,V2}, and in the case when b is orthogonal, the vectors 
- -  - - J _  

ul,  u2, vl, v2 are singular in (V, b). Hence there exists g • NG(U) M NG(U ), 
whose action on U is described by the matrix 

l: o o # + 1  0 0 
0 # t + l  - 1  
0 _# t  1 

Since X is confined, there exists a non-trivial element x E F n X g. It follows 

that  0 ~ [V,x] = [By,x] <_ [V ,F]N[Bg ,  X g] <_ U1 •]KBg. So we consider 



Vol. 128, 2002 PERIODIC SIMPLE FINITARY LINEAR GROUPS 307 

0 ~ w C U1 N KBg.  There must  exist a, b, c, d E K such tha t  

w E aulg + bu2g + cvlg + dv2g + KBo 

= a(ul + u2) + b(#ul + (# + 1)u2) 

+ c((# t + 1)vl - #tv2) + d(v2 - Vx) + ] ~ 0 "  

Compar ing coefficients at u2 and v2, we see tha t  a + b ( # +  1) = 0 and d - c ~  t = 0, 

whence the coefficients a, b, c, d must  all be zero, a contradiction. | 

PROPOSITION 5.12: Let G be a classical finitary linear group over the finite field 

F, and let V be the natural YG-module. Suppose that X is a proper primitive 

confined subgroup in G. Then one of the following two alternatives holds. 

(1) X and G are special transvection groups, and V is the natural or the 

conatural module for X ,  or 

(2) c h a r F  = 2 and X '  = F f ~ ( V )  < FSpy(V)  = G. 

Proof: Suppose tha t  X is confined with respect to the finite subgroup F of G. 

From Proposi t ion 5.11 we know tha t  X ~ is a classical finitary linear group over 

F, and tha t  V is the natural  FX~-module (or the conatural  module in the case 

when X t is a special transvection group). If  X ~ is a special t ransvection group, 

then it follows as in the proof  of Proposi t ion 5.11 tha t  G is a special t ransvection 

group. In particular,  every element in G has determinant  1. Thus X is perfect, 

and we are in case (1). 

Suppose next tha t  X ~ is a classical finitary linear group of isometries of a 

non-degenerate form n on V. If  x E X,  then V has a local system of non- 

degenerate subspaces U in V satisfying IV, x] _< U and V = U + Cv(x) .  Lemma 

5.5 yields that ,  for every such U, the element x induces a t ransformat ion of U 

which normalizes the finite classical group induced by Nx,  (U) C) Cx,  (U -k) on U. 

Hence x is an isometry of (V, n) too. 

Assume tha t  G is a special t ransvection group. Let W be a sum of hyperbolic 

planes with respect to n, which contains IV, F] and supplements Cv(F) .  Let 

T1 • T2 be a non-degenerate subspace of V which is the or thogonal  sum of two 

total ly isotropic subspaces Ti in V of the same dimension as W. Since V has 

a local system of subspaces U with the proper ty  tha t  No(U)  induces the full 

special linear group on U, there exists g E G with W g  = T1. Consider a non- 

trivial x ~ F g n X .  On the one hand we can find t / E  Ti such tha t  a( t l ,  t2) 7 ~ 0. 

On the other hand  IV, x] <_ T1 implies ~(tl ,  t2) = ~(tlx,  t2x) = n(t lx,  It2, x]) = 0. 

This contradict ion shows that  G too must  be a classical finitary linear group of 

isometries of a non-degenerate form b on V. 
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Let p = char F. From Lemma 5.10, the two forms match quite well on finite- 

dimensional subspaces which are orthogonal sums of hyperbolic planes. Some 

possibilities can therefore be ruled out by comparing the p-parts of the orders of 

finite classical groups acting on such subspaces - -  since the normalizers in clas- 

sical finitary linear groups of these subsp~ces are finite classical groups. Namely, 

ISp(4,F)IB > ISU(4,F)lp > If~+(4,F)lp. Therefore it just remains to rule out the 

following cases: 

(i) n unitary and b symplectic; 

(ii) ~ orthogonal and b unitary; 

(iii) n orthogonal, b symplectic, and char F ~ 2. 

In case (i) we consider the unitary, but not symplectic 4 x 4-matrix 

# + 1  0 0 with # t ¢ / ~ .  
0 #t + 1 - i  
0 _# t  1 

In case (ii) we consider the orthogonal, but not unitary 4 x 4-matrix 

# + 1  0 0 
0 # + 1  - 1  
0 - #  1 

In case (iii) we consider the 4 × 4-matrix 

with #t ¢ #. 

Because of charF ~ 2, this matrix is orthogonal, but not symplectic. 

6. C o h o m o l o g i c a l  c o n s i d e r a t i o n s  

We shall now derive a result about the cohomology of finitary linear groups 

which will be needed in our classification of confined subgroups. For the relevant 

definitions and basic facts about group cohomology, we refer the reader to [14]. 

LEMMA 6.1: Let G be the special linear group acting on the n-dimensio- 

nal vector space V. The dual space V* is isomorphic to the exterior power 

A n-1 V as a G-module. 

Proof: Consider the isomorphism qo which takes every ~ 6 /V~-IV to qo~ E 

Hom~(V,F), where ~ is defined via vqo~ = v A ~ 6 A'~V = F for all v 6 V. 



Vol. 128, 2002 PERIODIC SIMPLE FINITARY LINEAR GROUPS 309 

Since G has no non-trivial 1-dimensional representation, it acts trivially on A ~ v .  

Hence ( v ) ~ g  = (vg-1)qOa = v g  - 1  A ol =- v A ozg =- VqOag for all v C V, g ~ G, 

a C  A ~ - I  V. | 

LEMMA 6.2: Let Gn (n E N) be a family of finite classical groups of fixed type 

over a fixed finite field F, such that the natural Gn-module ~ is an orthogonal 

sum of n hyperbolic planes in the isometry case. Suppose further that the Gn are 

not symplectic in the case when charF = 2. Then HI(Gn,  VT~' ) = 0 for infinitely 

many values of n. 

Proof." If F has odd characteristic, then Gn contains the non-trivial central 

element, which acts fixed-point-freely on If* as scalar multiplication by - 1 .  

Therefore the assertion holds for every n. 

Suppose now that  char F = 2. In the case when the G,~ are unitary groups and 

F = GF(22k), we choose the n in such a way that  they are multiples of 22k - 1. 

Then each G,~ contains a central element acting fixed-point-freely on V, as scalar 

multiplication by a, where a C F \  GF(2 k) satisfies ata = 1. And so the above 

argument applies correspondingly. In the case when G is the stable special linear 

group and F > GF(2), we can use the same procedure as for unitary groups. 

If however F = GF(2), then it follows from Lemma 6.1 and [1], Table I that  

HI(Gn, V~*) is trivial for all but finitely many n. 

In the case when the GT~ are orthogonal, we need a different approach. Let H 

be a finite orthogonal group of a quadratic form of maximal Wit t  index over the 

field F of characteristic 2. Let U be the natural  FH-modute,  and S = H '  the 

corresponding classical orthogonal group. Suppose that  dim~ U k 8. Consider 

the Lyndon-Hochschild-Serre spectral sequence 

0 > H I ( H / S , V  s) ----~ Hi (H ,  V) ----+HI(S,V) H/s > H2 ( H/ S ,V  s) 

(see [14], Theorem VIII.9.5). The first and the last term are zero because S 

acts fixed-point-freely on V. Moreover H i ( H ,  V) = 0 by Corollary 4.3 of [24]. 

Therefore Hi(S,  V) H/S = 0 too. Since the group H / S  of order 2 cannot act 

fixed-point-freely on the elementary-abelian 2-group H 1(S, V), we conclude that  

H 1 (S, V) must be trivial. This observation applies to every Gn in place of S, 

since the dual G,~-module is isomorphic to the natural  Gn-module. | 

P R O P O S I T I O N  6.3: Let V be a vector space over the finite field F, and suppose 

that G is a classical finitary linear group, which is not finitary symplectic in the 
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case when charF = 2. I f  there exists a G-invariant finite-dimensional subspace 

W in V such that V / W  is the natural FG-module, then V = W ® IV, G]. 

Proof: Let V = V / W .  For every finite subgroup F0 of G, and for every finite- 

dimensional subspace U0 of V, there exists a subspace U in V containing W + Uo, 

such that [V, F] < U and V = U + Cv (F),  and such that U is an orthogonal sum 

of finitely many hyperbolic planes in the isometry case. Here the dimension of 

U can be chosen of any large enough size. If G is a group of isometries, choose 

F = Ca(U±).  Otherwise there exists a finite-dimensional subspace A _~ V* such 

that  annz~ U = 0 and annu A = 0, and we choose F = NG(U) A Ca(A±) .  In 

both cases, F acts as the finite classical group on U. In particular, F0 ~_ F.  

Moreover, the right choice of dim~U implies that H I ( F , U  *) = 0 (Lemma 6.2). 

Let k = dim~ W. Now [7], Proposition 10.1.2 yields 

ExtF(U, W) ~ Hi(F,  Hom~(U, W)) TM Hi(F,  Hom~(U, F) k) 

-~- Hi(F, Hom~- (U , F)) k "~=H l(F,  f f  *)k = 0 .  

In other words, U = W ® [U, F]. Since every pair (Fo, Uo) of the above form 

is contained in a pair (F, U) of the above form, it follows at once that W = 

w • [v, c] .  . 

7. Classification of  confined subgroups  

In the sequel, we shall consider the following situation. Let V be a vector space 

over the finite field F, equipped with a non-degenerate symplectic, unitary, or 

orthogonal form b. Let G be the classical finitary linear group of isometries of 

V. Suppose that W is a subspace of V, with radical W0 = W M W ±. Note that 

W can be strictly smaller than W ±1 (see [6], Chapter I). 

LEMMA 7.1: Ca(V/W) <_ Ca(W ±) = Ca(V/W±±). 

Proof: Consider elements v 6 V, w E W ±, and c C C a ( V / W ) .  Then b(v,[w,c]) 

= b(v, wc) - b(v,w) = b(vc -1 ,w)  - b(v,w) = b([v,c-1],w) = 0. Therefore 

[W±,c] < V ± = 0, and c 6 C a ( W ± ) .  Since W ±±± = W ±, we also get 

C a ( V / W  ±±) ~_ CG(wZ).  Conversely, if v E V, w 6 W ±, and c E Ca(W±) ,  

then b([v, c], w) = b(v, [w, c-1]) = 0. This implies [V, c] _< W ±±, and C a ( W  z )  <_ 

ca(v/w±±).  . 

Consider C = C a ( V / W )  and Z = CG(V/Wo) A C a ( W ) .  Clearly, [V, C, Z] = 
0 = IV, Z, C], so that [C, Z] = 0. In fact, a similar calculation shows that Z is 
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a normal subgroup in N a ( W ) .  The stabilizer R of the series V _> W > Wo _> 0 

is unipotent (see [23], Theorem B) and nilpotent of class at most 2. Note that  

R I < Z < R < C, and that  Z is isomorphic to a subgroup of Hom(V/W, Wo). In 

particular, if W has finite codimension in V, then Z is finite. 

We denote images of elements from N a ( W )  modulo Z by bars, and images 

in V modulo 

~Iom(W, Wo) 
morphism %: 

LEMMA 7.2: 

Horn(W, Wo) 

W0 by - The group C acts on R via conjugation, and on O = 

v ia~C = c- l~oc fora l lT  C •, c •  C. For e v e r y x  • R, a h o m o -  

W ----4 W0 is given by ~-~ = IT, x] for all v • V, w E W. 

C G ( V / W ) N C a ( W )  < Z. In particular, the map T: R ~ ~ v---4 Tx • 

is a monomomorphism of C-modules. 

Proof'. Straightforward calculations show that  T is a C-homomorphism. Con- 

sider elements v C V, w • W, and x • k e r r  = C a ( V / W )  C? Ca(W) .  Then 

b([v, x], w) = b(v, IT, x - l ] )  = 0. Therefore [V, x] _< W M W -c = Wo, and x e Z. 

I 

We finally note that  b induces a non-degenerate form b on l~,  and that  every 

element in C induces a transformation on W which is an isometry with respect 

to b. Correspondingly, a quadratic form q with associated bilinear form b on V 

induces a quadratic form ~ with associated bilinear form b on W, whenever the 

q-radical radq(Wo) = {w E Wo] q(w) = 0} coincides with Wo. This is always the 

case in odd characteristic. 

LEMMA 7.3: Consider the above situation, and suppose in addition that radq(Wo) 

= Wo when b is the associated bilinear form of a quadratic form q. Then the 

derived subgroup of C induces the classical finitary linear group on W with 

respect to b resp. ~. 

Proof." Let U be a non-degenerate complement to TWo in W. Via the canonical 

homomorphism W ~ U, any isometry ~ in the classical finitary linear group on 

W induces an isometry ~o in the classical finitary linear group on U. By Lemma 

4.2, there exists a finite-dimensional non-degenerate subspace Uo in U such that  

[U, qo] <_ U0. Note that  UNU~ < un[g ,  ~o] ± = Cv(qo) from Lemma 5.5. Moreover 

V = U0 ® Uo a.  Hence we may choose c e CG(U~) such that  c acts on Uo like ~o. 

Then c c C induces @ on W. This shows that  C induces every isometry from 

the classical finitary linear group on W. I t  follows that  C I acts like the classical 

finitary linear group on W. I 

From now on, let X be a confined subgroup of G, and let W denote the 
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minimal X-invariant subspace of finite codimension in V (see Corollary 5.2). In 

this situation the assumption in Lemma 7.3 is always fulfilled. 

LEMMA 7.4: Let b be orthogonal with quadratic form q on V. Then 

radq(Wo) ---- Wo. 

Proo~ Assume that  radq(Wo) is a proper subspace of Wo. Then it has 

codimension 1 in W0. Note that  radq(Wo) is X-invariant. For any w C W and 

any x • R we have 0 = q(wx) - q(w) = q([w, x]) + b(w, [w, x]) = q([w, x]). This 

shows that  R acts trivially on W/radq(Wo). But X ' R / R  is infinite and simple, 

and so W/radq(Wo) is an extension of the trivial X'R/R-module  by the natural 

X~R/R-module. By Proposition 6.3, the extension splits. Hence X normalizes 

the subspace [IV, X ~] of codimension 1 in W. This contradicts the minimal choice 

of W. II 

PROPOSITION 7.5: / f b  is orthogonal, then ]C : C n X R  I < 2. / f c h a r F  is odd or 

if  b is unitary, then C < X R. 

Proof" Every element in C induces an isometry on W with determinant 1. 

Therefore, if b is not orthogonal, then Lemma 7.3 ensures that  C induces the 

classical finitary linear group of isometrics of b on W. It  now follows from Propo- 

sitions 5.6 and 5.12 that  C / R  <_ X R / R .  

Suppose next that  b is orthogonal. Then C ~ induces the finitary orthogonal 

group of isometrics of b on W, while C may induce the group of all finitary 

isometries of b with determinant 1. In particular, CtR has index at most 2 in C 

(see [27], Theorem 11.51). | 

We are now well-prepared to give the proof of Theorem A. 

Proof of par t  (b) of Theorem A: By Corollary 5.2 there exists a minimal X-  

invariant subspace W of finite codimension in V, and TWo = W n W ± is the 

largest X-invariant subspace of finite dimension in W. We shall now stick to 

the notation introduced above. It  is clear from Proposition 7.5 that  the derived 

subgroup C r and the finite residual C ° of C are contained in X R .  We will 

show in the sequel that  R <_ X Z .  It  then follows that  C ° <_ X Z ,  whence 

Ico : c o n Z l  = I V ° X :  x l  <_ [ z x  : xI = IZ: z n xI  < oo, and C o <_ X .  

Fix some r C R. We now reduce our considerations to the countable situation. 

There exists a non-degenerate subspace Wa in V such that  W = 141o ® W1. 

By Lemma 4.2, W0 is contained in a non-degenerate subspace S _< V, which 

is an orthogonal sum of dim~ Wo hyperbolic planes. And so S = Wo ® So for 
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some totally isotropic subspace So of S. Because W1 _< W~, the space S has 

trivial intersection with W1. We need to establish W -- (W N S) ® (W A S±): 

Because V = S @ S ±, every w E W has the form w = Sl + s2 for suitable 

sl E S, s2 E S ±. However, Wo _< S, and so S ± + W  _< W~-. It follows that 

Sl = W -  s2 E SA  W~ = W NS  and s2 = w -  st E W N S  ±. 
Recall that D = X A C'R induces the classical finitary linear group on W 

(Proposition 7.5). We define ascending chains of finite-dimensional subspaces 

Un _< W1 (n E N), and of finite subgroups Xn _< D (n E N) as follows. Each 

U~ shall be the orthogonal sum of Un-1 and some additional hyperbolic planes. 

Choose Uo and Xo such that IV, r] < Uo•TW0 and V = Uo +Cv(r) ,  such 

that  Wo _< [Uo, Xo], and such that XoR/R  induces the finite classical group 

CD/R(~]~) on (?0. In the general step n -+ n +  1, we choose U~+I and Xn+l such 

that [V, Xn] < Un+l ~ Wo and V = Un+l + Cv(Xn), and such that Xn+IR/R 
induces the finite classical group CD/R(U~+I) on U,~+I- 

Consider W2 = ~J~ Un and _~ = U,~ x~.  Clearly, V2 = Wo ® W2 • So is non- 

degenerate. From Lemmata 7.2 and 7.3, CG(V/V2) is the classical finitary linear 

group with natural module V2. Every finite subgroup F of G has a conjugate 

in Co(V/V2). Therefore Cx(V/V2) is confined in Ca(V/V2). By construction, 

the subgroup X of Cx(V/V2) acts irreducibly on W2, and Wo < [W2, 2] .  Hence 

Wo ® W2 = W N V2 is a minimal .~-invariant subspace of finite codimension 

in V2- And finally, the stabilizer in Co(V/V2) of the series V2 _> W A V2 > 

Wo _> 0 contains our fixed element r E R. We also need to establish that 

Z2 = CG(V/V2) N Cc(V2/Wo) N CG(W A V2) is contained in Z: Consider some 

z2 E Z2. The restriction of z2 to V2 stabilizes the series S > Wo >_ 0 in S and 

centralizes V2 N S ±. And so it extends to some z E Z which centralizes S ±. 

However, Z _< Z2. It follows that z2z -1 E Ca(V/V2) A Co(V2) = 1, whence 

z2 E Z. All of this shows that we may replace V, G, X, W by t/2, Ca(V/V2), 
Cx(V/V2), W A V2 (resp.), and assume in this way that V and G are countable. 

Because C acts trivially on Wo, the C-module Horn(W, Wo) is isomorphic to 

a direct sum of finitely many copies of Horn(W, F). Namely, Horn(W, Wo) 
k @~=1 Horn(W, (wi)) for a basis { w l , . . . ,  wk} of Wo. For each @ E W define the 

form ¢~ via (~ )¢ j  = b(~, ~). Then 

(U)¢~ : (UC--1)¢w : b('uc -1, w) = b(~, wc) = (U)¢wc for every c E C. 

This shows that the map ¢: ~ ,  > Cw is an isomorphism of C-modules, except in 

the unitary case, where ¢ is semilinear instead of linear. Hence M = <¢~ l w E W> 

is an irreducible D-module (see [20], Proposition 7.5 and [19], Section 2.2). Since 

G is countable, W has a basis with respect to which C acts on W by stable 
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matrices (see [17], Theorem 2.1). For each x E R, the map ~-~ annihilates all 

but finitely many vectors of this standard basis. Therefore the image of T is 

isomorphic to a D-submodule of M k. I t  follows from Lemma 7.2 that  R is a 

direct sum of copies of M. 

There exists a non-degenerate subspace W1 in V such that  W -- Wo@W1. Now 

X n R has a D-invariant complement B in R, and so DR is a split extension of B 

by D. On the other hand, Lemmata  7.2 and 7.3 show that  CG(V/W1) n DR has 

trivial unipotent radical and induces the same group of transformations on W as 

DR. Therefore it is a complement to R in DR. Since D R / B  TM D, also D splits 

over X n R, with some complement Y. Note that  Y is the extension of the finite 

abelian p-group Z by the classical finitary linear group Y. Because Y is infinite 

and simple, Z is central in Y. We can write Y as the union of a local system of 

finite classical groups. Their Schur multipliers are trivial. Hence Y = YI x Z, 

and Y' < (DZ)'  < D'[D, Z] = D' <_ X.  Because Y'  acts as the classical finitary 

linear group on W, Proposition 6.3 implies that  W = W0 @ [W, yt]. 

Assume that  X n R is a proper D-submodule of R. Then X n R is a direct sum 

of at most k -  1 copies of M,  and [W, X NR] is a proper subspace of Wo. However, 

Y ' ( X  n R )Z  normalizes U = [W, Y'] + [W, X N R]. Let T be a transversal of D 

in X.  Because D has finite index in X,  the intersection nteT ~ft is a proper X-  

invariant subspace of finite codimension in W. This contradiction to the choice 

of W shows that  R < X Z ,  as desired. I 

Proof of part (a) of Theorem A: Here C acts on W as the finitary symplectic 

group with respect to b (Lemma 7.3), and the only difference is caused by the 

action of X on W. Namely, Lemma 5.4 and Propositions 5.6/5.12 imply that  

either X acts on W like C (so that  we can again argue as in part  (b) of Theorem 

A), or that  X I acts on W like a classical finitary orthogonal group with respect to 

a quadratic form ~ with associated bilinear form b. In this latter case, we choose 

a complement U to W0 in W, and an F-basis {vi + W] i E I}  of V/W.  Then a 

quadratic form q on W with associated bilinear form b is given via q(vi) = 0 for 

all i, and q(u + w) = ~(u) for all u E U, w E W0. Note that  W0 = radq(W0). In 

particular, R is contained in the finitary orthogonal group H of isometries of q. 

Therefore, the proof of part  (b) can be imitated with H in place of G. I 

The finite sections in C can in fact be located more precisely. 

PROPOSITION 7.6: Let p = c h a r F  and k = dim~ W0. 

(a) If p is odd, then R < X.  In particular, C <_ X whenever b is symplectic or 

unitary, while IC : C n X[ <_ 2 when b is orthogonal. 
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(b) I fp  = 2, then IC:  C n X] _< 2]F[ k resp. [(C A H ) :  (C n H N X)l ___ 2]FI k. 

Proo~ Suppose first that  p is odd. It  suffices to show that  Z is contained in X. 

To this end we will show that  Z _< R t, because R' < ( (X  N C)Z) '  <_ X ' .  

There exists a non-degenerate subspace W1 in V such that  W = Wo ® W1. 

By Lemma 4.2, Wo is contained in a non-degenerate subspace S <_ V, which 

is an orthogonal stun of dim~ W0 hyperbolic planes. And so S = Wo ® So for 

some totally isotropic subspace So of S. Because W1 <_ W~,  the space S has 

trivial intersection with W1. Let U = W0 • H ® So, where H is a hyperbolic 

plane in W1. As in the second paragraph of proof of part  (b) of Theorem A, 

W = (W n U) ® (W N U±), and every element in the stabilizer R0 of the series 

U > W N U > W0 > 0 in U extends to an element in R which centralizes U ±. 

From Lemma 5.5, the group Z centralizes U ±. It  therefore suffices to show 

that  the restriction to U of any element from Z is a commutator  in Ro. In order 

to bet ter  understand the structure of Ro, we will write its elements now as block 

matrices and make some explicit calculations. For convenience we arrange the 

blocks in an order corresponding to W0, H, So. Then elements of R0 take the 

form 

I . 
0 

With respect to a suitable basis, the Gram matrix of b has the form 

(°°i) / 0 J , where J is the (2 x 2)-matrix 0 1 
=t=I 0 ±1 0 " 

The elements of R0 are characterized by the condition 

(, o i)(Oo o,)(i i) (Oo o ,) A t I J 0 I = J 0 . 
B t D ~ ± I  0 0 0 ± I  0 0 

This is equivalent to D t J ± A  = 0 and B t ± B  + D t J D  = 0. And so any 

commutator 

0 A Z  - XD'~  

) I 0 
0 I 

of two elements in R satisfies A Z  - X D  = D t J Z  :i: Z t JD .  
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We want to show now that, over the field F of odd characteristic, the commu- 

tator subgroup R~ contains the central subgroup CRo (U/Wo) C7 CRo (W f7 U) of 

all matrices 

,0 
where T is (anti)symmetric. To this end, consider the elementary matrices D = 

Eli and Z = E2j. Choose A = DtJ and X = ZtJ, and let B = 0 = Y. These 

choices yield matrices in Ro, since J = El2 -t- E21 gives 

B t 4- B + D t J D  = D t J D  = Ei1E12Eli 4- Ei1E21Eli = O, 

and similarly yt  -t- Y -t- ZtJZ = 0. Now 

whence 

D t J Z  = EizE12E2j :k EilE21E2j = Ei2E2j = E i j ,  

D t j z  i Z t jD  = D t j z T  (DtjZ) t = E~j T Ej~. 

In the case when p = 2, the same argument shows that R~ contains every 

element/from Z, whose matrix entry T has zero diagonal. | 

Note also that  C = Ca(W J-) and NG(W) = NG(W ±) whenever W = W ±± 

(Lemma 7.1). 

COROLLARY 7.7: I f  V = W ® W ±, then Ca(W ±) < X < NG(W ±) resp. 
C H ( W  1) ~ X A H < N H ( W £ ) .  

Proo£" From Lemmata 7.2 and 7.3, Ca(W ±) is the classical finitary linear group 

with natural module W. II 

Proof  of Theorem B: From Corollary 5.2, there exist a minimal X-invariant 

subspace W of finite codimension in V, and a maximal finite-dimensional X- 

invariant subspace W0 <_ W. Let 

N = NG(W) n Na(Wo) and C = Ca(V/W) n Ca(Wo). 

Let R = Cc(W/Wo) denote the unipotent radical of N. Let W1 < V be a 

subspace of dimension dim~ W0 + dim~ V/W which contains Wo and supplements 

W in V. Then there exists a finite-dimensional A1 < A such that V = W1 G W2 

where W2 = A~. Now V and A can be written as unions of local systems of 

finite-dimensional subspaces V/ resp. Fi (i 6 I)  such that V = 17/ @ F~ and 
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W1 < V~, A 1 < Fi for all i. Let Gi = Na(V/) n CG(F~) = T~(Fi, V/). Clearly, 

Ca, (W1) n Na~ (Vi v) W2) = T~-(F/N W~,  Vi N W2) is a complement to R N Gi in 

C v1Gi. Therefore Y = TF(Wff, W2) is a complement to R in C. In particular, 

C acts like a special transvection group on W = W/Wo. Now Lemma 5.4 and 

Propositions 5.6/5.12 imply that  X too acts like a special transvection group on 

W, and that  W is the natural  or the conatural module for this action. 

For every x E R, homomorphisms rx: W ~ W0 and ax: V/W ~ W are 

given via 

~T~=[W,X] for all w E W  and 

(v+W)ax=[v,x]+Wo for all v E V .  

Clearly N acts on R via conjugation, and actions of N on Horn(W, W0) resp. on 

Hom(V/W, W) are given by 99g = g-l~pg for all g C N,  and all ~ in Hom(W, W0) 

resp. in Hom(V/W, W). Now the map #: x ~ (7-~, as)  is a homomorphism of N-  

groups, with kernel Z = CR(W) N CR(V/Wo). In particular, R/Z is isomorphic 

to an N-submodule of Hom(W, W0) @ Hom(V/W, W), whence R'  < Z. 

Now Horn(W, W0) is isomorphic to a direct sum of finitely many copies of the 

dual module W*, and [W*, X °] is an irreducible X°R/R-module, hence natural  

or conatural by [22], Theorem B. Moreover, Hom(V/W, W) is isomorphic to a 

direct sum of finitely many copies of the (co)natural X°R/R-module W. There- 

fore Lemma 6.2 and [21], Theorem 2 yield that  X ° splits over R, with some 

complement Y. Moreover, Z is isomorphic to a submodule of Horn(V/W, W0), 

and hence finite. It  now follows as in the proof of part  (b) of Theorem A that  

Y = Y~ x Z and that  Y~ is a complement to R in X °. 
From Proposition 6.3 we obtain W = [W, Y'] ® Wo as Y~-modules, and hence 

U = [W, Y'] = [V, Y'] is an irreducible Y'-submodule of finite codimension in V. 

By [22], Theorem B, this is either the natural  or the conatural Y~-module. Cor- 

respondingly, F = [A, Y~] is an irreducible Yt-submodule of finite codimension in 

A, and this must then be the conatural resp. the natural  Y~-module. Altogether 

Y' = TF(F, U) resp. Y~ = TF(U, F). Here annr  U = 0 and annv F = 0, because 

F and U are irreducible Y~-modules. | 

8. S o m e  c o n s e q u e n c e s  

In this section we essentially discuss some of the problems raised by A. E. Zalesskii 

in [30], pp. 223-224. 

Clearly no confined subgroup in a classical finitary linear group G is locally 
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soluble, because the centralizer of every finite-dimensional subspace of the natural 

G-module contains an infinite simple section. 

PROPOSITION 8.1: Let G be a classical finitary linear group of isometries, with 
natural module V over the finite field F. Then 

(a) every confined subgroup of G has just finitely many overgroups in G, and 

(b) the intersection of two confined subgroups of G is again confined in G. 

Proof: (a) Suppose first that G is a classical finitary linear group of isometries, 

which is not symplectic in case char F = 2. Assume that X is a confined subgroup 

in G with infinitely many overgroups X~ (i C I). From Corollary 5.2 there exists 

a minimal X-invariant subspace U of finite codimension in V. Also, there exists 

a minimal Xi-invariant subspace Ui of finite codimension in V for each i, and Xi 

has finite index in Na(Ui) from Theorem A. By minimality, U must be contained 

in every Ui. But the field F is finite, and so we may assume without loss that  all 

the Ui coincide with a single subspace W of V. On the other hand, it follows from 

Proposition 7.6 that  No(W)  has just finitely many subgroups of finite index, a 

contradiction. Hence X admits just finitely many overgroups in G. 

Suppose now that G is a finitary symplectic group and charF = 2, and make 

the above assumption. From Theorem A there exi~,,t quadratic forms q resp. 

qi on V with associated orthogonal form b, and minimal X- resp. Xi-invariant 

subspaces U resp. Ui of finite codimension in V, such that X N H resp. Xi N Hi 

has finite index in NH(U) resp. NH~(Ui); here H resp. Hi denotes the finitary 

orthogonal group of isometries of q resp. qi in G. Again we may assume that all 

the Ui coincide with a single subspace W of U. The radical of W is complemented 

by a non-degenerate subspace W of finite codimension in W. By Lemma 7.3, the 

derived subgroup of CXnH(V/W) resp. CXnH, (V/W) induces on W the finitary 

orthogonal group with respect to the form q resp. q~. Now Lemmata 4.2 and 5.10 

imply that  the forms q~ coincide with q on W. Since W has finite codimension 

in V, and since the field F is finite, there exist just finitely many possibilities to 

extend q]w to a quadratic form on V with associated bilinear form b. Hence we 

may assume without loss, that the forms q~, and also the subgroups Hi, coincide. 

It therefore suffices to show that Na(W) has just finitely many subgroups X~ 

such that W is a minimal Xi-invariant subspace of finite codimension in V, and 

such that XinH~ has finite index in NHi (W). We stick to the notation introduced 

in Section 7. By Lemma 7.4, every vector in W0 is singular with respect to 

qi. Therefore the unipotent radical R of C = Co(V/W) is contained in Hi. 

Recall that C induces FSpF(W, b) on W, while X~Z induces either FSp~(W, b), 
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or (C N Hi)/R, or (C N Hi)'R/R on W. In the first case, C' <_ Xi, and Xi is 

one of the finitely many subgroups of finite index in Na(W). In the second case, 

XiZ /R  contains the direct product of (C N Hi)'R/R with a subgroup of the finite 

group (NG(V/W)/CG(V/W)) x (NG(Wo)/CG(Wo)). Also in this situation there 

are just finitely many possibilities for XiZ, hence also for the overgroup Xi of 

the finite residual of XiZ. 

(b) Let X1 and X2 be confined subgroups in G. If  G is not symplectic in case 

charF = 2, then there exist subspaces W1 and W2 in V such that  CG(V/Wi)NXi 
has finite index in CG(V/Wi) for i = 1, 2. Then X1 N X2 NCG(V/(W1N W2)) has 

finite index in Cc(V/(W1 N W2)) = Ca(V/W1) n Cc(V/W2), whence X1 N X2 is 

confined in G by Proposition 4.6. 

Suppose now that  G is a finitary symplectic group and char F = 2. Then 

there are quadratic forms ql and q2 on the natural  FG-module, whose associated 

bilinear form is the symplectic form on V, such that  Xi n CH~ (V/Wi) has finite 

index in CH~ (V/Wi), where Hi is the finitary orthogonal group of isometries of qi. 
As in part  (a), there exists a non-degenerate subspace W of finite codimension in 

W1 n W2. Let U be the largest subspace of W on which ql and q2 coincide. For 

every A E F, the set of all w c W with ql(w) - q2(w) = A is a coset of U in W. 

Therefore U has codimension 1 in W. But now Y = X1 N X2 N CH~ (V/U) has 

finite index in NH~ (U), whence Y and X1 n X2 are confined in G by Proposition 

4.7. 1 

A subgroup X of the locally finite group G is said to be c o b o u n d e d  in G, 

if there exists a local system of finite subgroups G~ (i 6 I )  in G such that  the 

numbers 
~i(t, g) = IG~ n tel  

1 + ]Gi N Xg N tG[ 

are uniformly bounded for all i 6 I and all t, g 6 G; here t G denotes the conjugacy 

class of t in G. Cobounded subgroups are supposed to be large, and in fact, 

every cobounded subgroup of a locally finite, simple group G is confined in G 

([26], Proposition 2). It  was conjectured in [26] and in [30], that  the converse 

holds too. This converse holds in the case of alternating groups ([26], Theorem 

3). Although we cannot decide the conjecture for classical finitary linear groups, 

we shall now give evidence that  the above notion of coboundedness seems to be 

a bit too strong to be satisfied by confined subgroups. 

PROPOSITION 8.2: Let G be a countable finitary symplectic group with natural 
module V over the finite field with q elements. Consider the confined subgroup 
X -- Cc(W) of G, where W is a non-degenerate 2k-dimensional subspace of 
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V. Le t  V be the union o f  the ascending chain V2n (n E N) of  non-degenerate 

subspaces o f  dimensions 2n, and let Gem = C a ( V ~ )  form the 'natural'  local 

sys tem in G. Then for every r E N, there exists an element  t~ E G such that  

~2,~(t~,g) is asymptot ical ly  equal to q2k(r+l) for every g C G, as n tends to 

infinity. 

Proof'. Let U~ (i C N) be pairwise orthogonal hyperbolic planes in V. Let ~-/be 

transvections in G with [V, Ti] < Ui and Ui k < CV(Ti). We choose tr = T1.. .  ~-r+l. 

Let us determine ]G2n A T~I. To this end we may assume without loss that U1 

< V2n. For any transvection T E G2~, an ordered hyperbolic pair in V2,~ is given 

by x , v  where 0 ¢ x E [V,T] and v C V2,~\[V,T] ± with b(x ,v )  = 1. Here, two 

ordered hyperbolic pairs x, v and y, w are obtained from the same transvection 

if and only if x = Ay and v + [V, 7] ± = A-lw + [V, T] ± for some scalar A ¢ 0. 

The number of ordered hyperbolic pairs in V2~ is (q2~ - 1)q 2~-1. Therefore the 

number of transvections in G2~ is (q2~ _ 1)/(q - 1). However there are q - 1 

different conjugacy classes of transvections in G2n of equal size. Altogether, 

q 2 n  _ 1 
IG2n n ~ l  = IG~. n ~ : ° 1 -  ( ~ - - i ~  - S(~). 

Since T2.. .  Tr+l E Co(U1) N N c ( U ~ ) ,  an easy recursion now shows that 

1 
IG2~ M t~al = (r + 1)~" f ( n ) . .  .... • f ( n  - r) for all sufficiently large n. 

The subspace W is non-degenerate, and so X g is the finitary symplectic group 

on ( W g )  ±. It follows that 

1 
IG2~ n X  g n t~l = (r + 1)!" f ( n  - k) . . .... • f ( n  - k -  r) 

for all sufficiently large n. Thus, 

I G 2 n  r l  t T I  f ( n )  . . . f ( n  - r )  

l+lC2,~nxgntTI (r+l)!+f(n-k) . . . f (n-k-r)  
(q2n_  1) . . . (q2(n-r)  _ 1) 

(r + 1)]. ( q -  1)2(r+l) + (q2(n-k) _ 1) . . .  (q2(n-k-r) _ 1) 

for large n. Here the highest exponent of q takes the value 

2 u -  E u = 2 E ( ( n - r + u ) - ( n - r - k + u ) )  

= 2k(r  + 1). | 
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Note that Proposition 8.2 does not show that centralizers X of finite- 

dimensional non-degenerate subspaces in countable finitary symplectic groups 

are not cobounded, since the local system is chosen in a very specific way. It 

might be possible that a slick choice of local system turns X into a cobounded 

subgroup. However, the authors believe that X is not cobounded here. 

Proposition 8.2 rather suggests to introduce the following notion. A subgroup 

X of the locally finite group G is said to be weak ly  c o b o u n d e d  in G, if there 

exists a local system of finite subgroups Gi (i 6 I) in G such that for every fixed 

t C G, the numbers/~( t ,g)  are bounded for all i 6 I and all g C G. Note that the 

proof of [26], Proposition 2 shows as well that every weakly cobounded subgroup 

of a locally finite, simple group is confined. 

CONJECTURE 8.3: Every confined subgroup of a locally finite, simple group is 

weakly cobounded. 

We close with an interesting observation concerning joins of centralizers in 

classical finitary linear groups of isometrics. 

PROPOSITION 8.4: Let G be a classical finitary linear group of isometrics, with 

natural module V over the finite field F. If  U1 and U2 are finite-dimensional 

subspaces of V, then g = ( CG( UI ) , CG( U2 ) } has l~nite index in CG(U 1 ~ U2). In 

particular, ]Ca(U1 N U2) : J[ <_ 2 whenever chary  is odd. And both centralizers 

are equal when U1 N []2 is non-degenerate, or when G is symplectic or unitary in 

odd characteristic. 

Proof." From Lemma 4.4, Proposition 4.6, and from Lemma 7.1, the subgroup J 

is confined in G. Hence there exists a minimal J-invariant subspace W of finite 

codimension in V (Corollary 5.2). Since U~ is the smallest Cv(Ui)-invariant 

subspace of finite codimension in V, the space U = U~ + Up must be contained 

in W. On the other hand, Lemma 7.1 gives Ca(Ui) --- CG(V/U~), whence U is 

J-invariant. It follows that U = W. 

Clearly, J < Ca(U1 n U2) < NG((U1 N [/2) ±) = Na(U) by Lemma 4.4. If G 

is not a finitary symplectic group, or if char Y is odd, then J has finite index in 

NG(U) and in Ca(U1 N U2) by virtue of Theorem A. If G is finitary symplectic 

in characteristic 2, then we consider a non-degenerate subspace Vi of finite codi- 

mension in U~. Now the subgroup CG(V/Vi) of CG(Ui) does not respect any 

non-zero quadratic form related to the given symplectic form on V/. Therefore J 

must induce the finitary symplectic group on the quotient W, and J has finite 

index in NG(W) too by Theorem A. 

The remaining assertions follow from Proposition 7.6 and Corollary 7.7. | 
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P re sumab ly  (Co(U1),  Ca(U2)) = Ca(U1 N U2) always holds in the  s i tuat ion of 

Proposi t ion  8.4. But  we do not pursue this further  here since the proof  would 

require an even more  detailed s tudy of the s t ructure  of Co(U1 A U2). 
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